

Heuristics for Licenses Composition

Guido Governatori¹, Ho-Pun Lam¹, Antonino Rotolo², Serena Villata³, Fabien Gandon³

> ¹ NICTA ² CIRSFID, and Law Faculty, University of Bologna 3 INRIA Sophia Antipolis

JURIX 2013, Bologna

The Tragedy of App A.U. Thor

db3

Restaurant, Location Restaurant, Signature

Restaurant, Rating

The Tragedy of App A.U. Thor

ODbL

Research Question

How to express the licensing terms associated to data coming from heterogeneous sources?

- How to compose in a compliant way the licensing terms associated to a set of heterogeneous data to produce a single composite license?
- A How to determine what are the legal effects of the composite license?
- How to produce in an automated way the composite license adopting different composition heuristics?

Framework features

 Combination of Semantic Web languages (machine-readable licenses) – defeasible deontic logic,

Framework features

- Combination of Semantic Web languages (machine-readable licenses) – defeasible deontic logic,
- Extension of existing proposals for licenses compatibility and composition in service license analysis and CC licenses,

Framework features

- Combination of Semantic Web languages (machine-readable licenses) – defeasible deontic logic,
- Extension of existing proposals for licenses compatibility and composition in service license analysis and CC licenses,
- Heuristics for licenses combination.

Architecture

The Logic

- describe ontology of concepts involved in LOD licenses,
- 2 capture the deontic component of those licenses.

The Rules

Ontology rules:

regular defeasible logic rules for deriving plain literals,

$$a_1,\ldots,a_n\Rightarrow_c^{l_1}b$$

Logic of deontic rules:

constructive account of basic deontic modalities (obligation, prohibition, permission),

$$a_1,\ldots,a_n,\mathsf{O}b_1,\ldots,\mathsf{O}b_m,\mathsf{P}c_1,\ldots,\mathsf{P}c_n\Rightarrow^{l_2}_{\mathsf{O}}p$$

The Rules

Ontology rules:

regular defeasible logic rules for deriving plain literals,

$$a_1,\ldots,a_n\Rightarrow_c^{l_1}b$$

Logic of deontic rules:

constructive account of basic deontic modalities (obligation, prohibition, permission),

$$a_1,\ldots,a_n,\mathsf{O}b_1,\ldots,\mathsf{O}b_m,\mathsf{P}c_1,\ldots,\mathsf{P}c_n\Rightarrow^{l_2}_\mathsf{O}p$$

if a_i are the case, b_j are obligatory (forbidden) and c_k are permitted then Op holds in license l_2 ($+\partial^{O^{l_2}}p$)

Composition heuristics

 OR-composition: if at least one of the licenses involved in the composition owns a clause, then also l_c owns it;

Composition heuristics

- OR-composition: if at least one of the licenses involved in the composition owns a clause, then also I_C owns it;
- AND-composition: if all the licenses involved in the composition own a clause, then also l_c owns it;

PANDORO

PANDORO

OR heuristic for obligations
 Something is obligatory (forbidden) if there is at least one license that makes it obligatory (prohibits it)

PANDORO

- OR heuristic for obligations Something is obligatory (forbidden) if there is at least one license that makes it obligatory (prohibits it)
- **AND** heuristic for permissions Something is permitted if it is permitted by all licenses.

Proof Conditions for O

If
$$P(n+1) = +\partial^{O^{lc}}q$$
 then

$$(1)+\Delta^{\mathsf{O}^{lc}}q\in P(1..n)$$
 or

(2)
$$-\Delta^{O^{lc}} \sim q \in P(1..n)$$
 and $\exists I_i \in \text{Lic such that}$

(1)
$$\exists r \in R_{sd}^{O^{lc}}[q] : \forall a, Xb, \neg Yd \in A(r): \\ +\partial^{c}a, +\partial^{X^{l_i}}b, -\partial^{Y^{lc}}d \in P(1..n) \text{ and }$$

(2)
$$\forall I_j \in \text{Lic}, \, \forall s \in R^{\text{O}^{l_j}}[\sim q]$$
, either

(1)
$$\exists a \in A(s)$$
 or $Xb \in A(s)$ or $\neg Y \in A(s)$:
 $-\partial^c a \in P(1..n)$, or $-\partial^{X^{lc}} b \in P(1..n)$, or $+\partial^{Y^{lc}} d \in P(1..n)$; or

(2)
$$\exists l_k \in \text{Lic}, \exists t \in R^{O^{l_k}}[q]: \forall a, Xb, \neg Yd \in A(t), +\partial^c a, +\partial^{l_c} b, -\partial^{l_c} d \in P(1..n), \text{ and } t \succ s.$$

Proof Conditions for O explained

We can prove Op if

- there is a license having an applicable rule for p and
- for all licenses all rules for $\sim p$ are either
 - the rule is discarded (i.e., not applicable)
 - the rule is defeated by a stronger rule for p

Permission

Permissions as lack of the obligation to the contrary

Permission

- Permissions as lack of the obligation to the contrary
- Permissions as exceptions to obligations to the contrary

$$a_1,\ldots,a_n \leadsto_{\mathsf{O}}^{l_i} p$$

We can prove Pp

• there is a license with an applicable defeater for p and

We can prove Pp

- there is a license with an applicable defeater for p and
- all rules for $\sim p$ in all licenses are either

We can prove Pp

- there is a license with an applicable defeater for p and
- all rules for $\sim p$ in all licenses are either
 - discarded (non applicable)

We can prove Pp

- there is a license with an applicable defeater for p and
- all rules for $\sim p$ in all licenses are either
 - discarded (non applicable)
 - defeated (weaker than an applicable rule for p)

Evaluation: SPINdle

14/23

http://spin.nicta.org.au/spindle/

SPINdle

- SPINdle handle natively a single license
- encode each license in SPINdle
- transformations to handle AND- and OR-heuristics

Encoding Licenses

$$F = \{Open\}$$

$$L = \{I_{OGL}, I_{ODbL}, I_{BY-NC-ND}\}$$

$$R^{O^{lOGL}} = \{r_1 : \Rightarrow_O^{lOGL} \ Attribution, \qquad r_2 : Open \leadsto_O^{lOGL} \ Publishing, \\ r_3 : Open \leadsto_O^{lOGL} \ Distribution, \qquad r_4 : Open \leadsto_O^{lOGL} \ Derivative, \\ r_5 : Open \leadsto_O^{lOGL} \ Commercial\}$$

$$R^{O^{lODbL}} = \{r_6 : \Rightarrow_O^{lODbL} \ ShareAlike, \qquad r_7 : \Rightarrow_O^{lODbL} \ Attribution, \\ r_8 : \leadsto_O^{lODbL} \ Sharing, \qquad r_9 : \leadsto_O^{lODbL} \ Derivative\}$$

$$R^{O^{lBY-NC-ND}} = \{r_{10} : \Rightarrow_O^{lBY-NC-ND} \ Attribution, \qquad r_{11} : \Rightarrow_O^{lBY-NC-ND} \ \sim Commercial, \\ r_{12} : \Rightarrow_O^{lBY-NC-ND} \ \sim Derivative, \qquad r_{13} : \leadsto_O^{lBY-NC-ND} \ Sharing\}$$

$$\succ = \{l_{ODbL} \succ l_{BY-NC-ND}\}$$

SPINdle Representation


```
» Open
r1: => [Oc] Attribution
r2: Open =>[-Oc] -Publishing
r3: Open =>[-Oc] -Distribution
r4: Open =>[-Oc] -Derivative
r5: Open =>[-Oc] -CommercialExpl
r6: =>[Oc] ShareAlike
r7: =>[Oc] Attribution
r8: => [-0c] -Share
r9: =>[-Oc] -Derivative
r10: =>[Oc] Attribution
r11: =>[Oc] -CommercialExpl
r12: => [Oc] -Derivative
r13: =>[-0c] -Share
r9 > r12
```

Transformations (OR)

$$tor(r) = \begin{cases} r : A(r) \hookrightarrow p & r \in R^{c} \\ r : A(r) \rightarrow_{O^{c}} p & r \in R^{O^{l_{i}}}_{s}, l_{i} \in Lic \\ r : A(r) \Rightarrow_{O^{c}} p & r \in R^{O^{l_{i}}}_{d}, l_{i} \in Lic \\ r : A(r) \Rightarrow_{-O^{c}} \sim p & r \in R^{O^{l_{i}}}_{o^{l_{i}}}, l_{i} \in Lic \end{cases}$$

Transformations (AND)

$$tando(r) = \begin{cases} r_{ij} : A(r) \leadsto_{O^{j}} C(r) | r \in R^{O^{l_{j}}} \} \cup \{r : A(r) \Rightarrow_{-O^{i}} \sim C(r) | r \in R^{O^{l_{j}}}_{dft} \} \cup \\ \{r | r \in R^{O^{l_{j}}}_{sd} \} \cup \{o_{q} : O^{l_{1}}q, \dots, O^{l_{n}}q \Rightarrow_{O^{c}} q \mid l_{i} \in \text{Lic}, \exists r \in R^{O^{l_{j}}}, C(r) = q \} \end{cases}$$

$$tandsp(r) = \begin{cases} p_{q} : P^{*}q, P^{l_{1}}q, \dots, P^{l_{n}}q \Rightarrow_{P^{c}} q, t_{q}^{i} : \neg O^{l_{j}}q \Rightarrow_{P^{l_{j}}} q \\ p_{q}^{i^{*}} : -O^{l_{i}} \sim q \Rightarrow_{P^{*}} q, p_{q} : -O^{l_{i}} \sim q \Rightarrow_{P^{l_{i}}} q \mid l_{i} \in \text{Lic}, \exists r \in R^{O^{l_{i}}}, C(r) = q \} \end{cases}$$

$$tandwp(r) = \{p_{q} : \neg O^{l_{1}} \sim q, \dots, \neg O^{l_{n}} \sim q \Rightarrow_{P^{c}} q \mid l_{i} \in \text{Lic}, q \in \text{Lit} \}$$

Experiment

CC PDM

Permissions: Reproduction, Distribution, Derivative Works.

OS OpenData

- Permissions: Reproduction, Distribution, Derivative Works.
- Obligations: Notice, Attribution.

CC-BY-ND

- Permissions: Reproduction, Distribution, Derivative Works.
- Obligations: Notice, Attribution, Share Alike.
- Prohibitions: Non Commercial.

CC-BY-NC-SA

- Permissions: : Reproduction, Distribution.
- Obligations: Notice, Attribution.

Experiment

Compose (ms)	Reasonig	Total time (ms)
6.6	47.8	54.4
11.6	59.6	71.2
25	210.8	235.8
17.3	92.4	109.7
29	226.2	255.2
	6.6 11.6 25 17.3	6.6 47.8 11.6 59.6 25 210.8 17.3 92.4

- Data obtained by inference from one or several licensed datasets, i.e., queries going beyond basic SELECT queries, where aggregations are present, e.g., average, sum;
- Temporal terms of the licenses.

Thanks for your attention!

